

Expanding EOSC participation by a factor of a thousand: citizen science in the EOSC

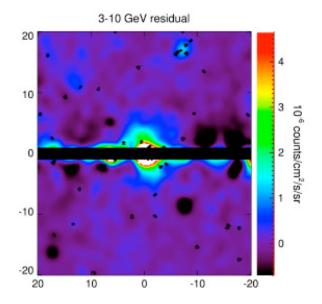
Prof Stephen Serjeant, EOSC Symposium, 17 June 2021

Making data FAIR is easy

compared to making FAIR data <u>useful</u>

Contents lists available at ScienceDirect

Physics of the Dark Universe

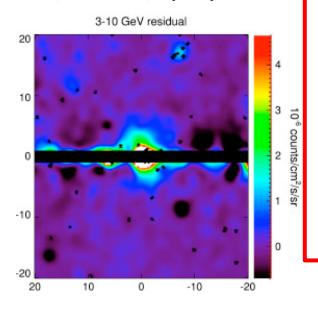

journal homepage: www.elsevier.com/locate/dark

The characterization of the gamma-ray signal from the central Milky Way: A case for annihilating dark matter

Tansu Daylan ^a, Douglas P. Finkbeiner ^{a,b}, Dan Hooper ^{c,d}, Tim Linden ^{e,*}, Stephen K.N. Portillo ^b, Nicholas L. Rodd ^f, Tracy R. Slatyer ^{f,g}

Contents lists available at ScienceDirect

Physics of the Dark Universe


journal homepage: www.elsevier.com/locate/dark

The characterization of the gamma-ray signal from the central Milky Way: A case for annihilating dark matter

Tansu Daylan ^a, Douglas P. Finkbeiner ^{a,b}, Dan Hooper ^{c,d}, Tim Linden ^{e,*}, Stephen K.N. Portillo ^b, Nicholas L. Rodd ^f, Tracy R. Slatyer ^{f,g}

THE ASTROPHYSICAL JOURNAL, 840:43 (34pp), 2017 May 1 © 2017. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4357/aa6cab

The Fermi Galactic Center GeV Excess and Implications for Dark Matter

M. Ackermann¹, M. Ajello², A. Albert³, W. B. Atwood⁴, L. Baldini⁵, J. Ballet⁶, G. Barbiellini^{7,8}, D. Bastieri^{9,10}, R. Bellazzini¹¹, E. Bissaldi¹², R. D. Blandford¹³, E. D. Bloom¹³, R. Bonino^{14,15}, E. Bottacini¹³, T. J. Brandt¹⁶, J. Bregeon¹⁷, P. Bruell⁸, R. Buehler¹, T. H. Burnett¹⁹, R. A. Cameron¹³, R. Caputo⁴, M. Caragiulo^{12,20}, P. A. Caraveo²¹, E. Cavazzuti²², C. Cecchi^{23,24}, E. Charles¹³, A. Chekhtman²⁵, J. Chiang¹³, A. Chiappo^{26,27}, G. Chiaro¹⁰, S. Ciprini^{22,23}, J. Conrad^{26,27,67}, F. Costanza¹², A. Cuoco^{14,28}, S. Cutini^{22,23}, F. D'Ammando^{29,30}, F. de Palma^{12,31}, R. Desiante^{14,32}, S. W. Digel¹³, N. Di Lalla⁵, M. Di Mauro¹³, S. Funk³⁴, P. Fusco^{12,20}, F. Gargano¹², D. Gasparrini^{22,23}, N. Giglietto^{12,20}, W. B. Focke¹³, A. Franckowiak¹, Y. Fukazawa³³, S. Funk³⁴, P. Fusco^{12,20}, F. Gargano¹², D. Gasparrini^{22,23}, N. Giglietto^{12,20}, F. Giordano^{12,20}, M. Giroletti²⁹, T. Glanzman¹³, G. A. Gomez-Vargas^{35,36}, D. Green^{16,37}, I. A. Grenier⁶, J. E. Grove³⁸, L. Guillemot^{39,40}, S. Guirice^{16,68}, M. Gustafsson⁴¹, A. K. Harding¹⁶, E. Hays¹⁶, J. W. Hewitt⁴², D. Horan¹⁸, T. Jogler^{34,43}, A. S. Johnson¹³, T. Kamae⁴⁴, D. Kocevski⁴⁴, M. Kuss¹¹, G. La Mura¹⁰, S. Larsson^{27,45}, L. Latronico¹⁴, J. Li⁴⁶, F. Longo^{7,8}, F. Loparco^{12,20}, M. N. Lovellette³⁸, P. Lubrano²³, J. D. Magill³⁷, S. Maldera¹⁴, D. Malyshev³⁴, A. Manfreda⁵, P. Martin⁴⁷, M. N. Mazziotta¹², P. F. Michelson¹³, N. Mirabal^{16,68}, W. Mitthumsiri⁴⁸, T. Mizuno⁴⁹, A. A. Moiseev^{37,50}, M. E. Monzani¹³, A. Morselli³⁶, M. Negro^{14,15}, E. Nuss¹⁷, T. Ohsugi⁴⁹, M. Orienti²⁹, R. Gorlando¹³, J. F. Ormes⁵¹, D. Paneque⁵², J. S. Perkins¹⁶, M. Persic^{7,53}, M. Pesce-Rollins¹¹, F. Piron¹⁷, G. Principe³⁴, S. Raino^{12,20}, R. Rando^{9,10}, M. Razzano^{11,66}, S. Razzaque⁵⁴, A. Reimer^{13,55}, O. Reimer^{13,55}, M. Sánchez-Conde^{26,27}, C. Sgro¹¹1, D. Simone¹², E. J. Siskind⁵⁶, F. Spada

Contents lists available at ScienceDirect

Physics of the Dark Universe

journal homepage: www.elsevier.com/locate/dark

The characterization of the gamma-ray signal from the central Milky Way: A case for annihilating dark matter

The science-inclined public is both the largest and most overlooked group of EOSC stakeholders

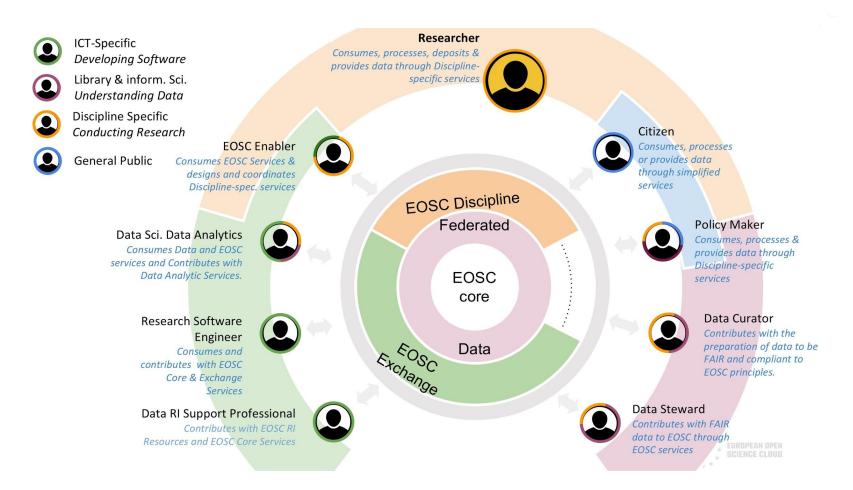


Image credit: Natalia Manola (OpenAIRE), Vinciane Gaillard (EUA), Iryna Kuchma (EIFL)

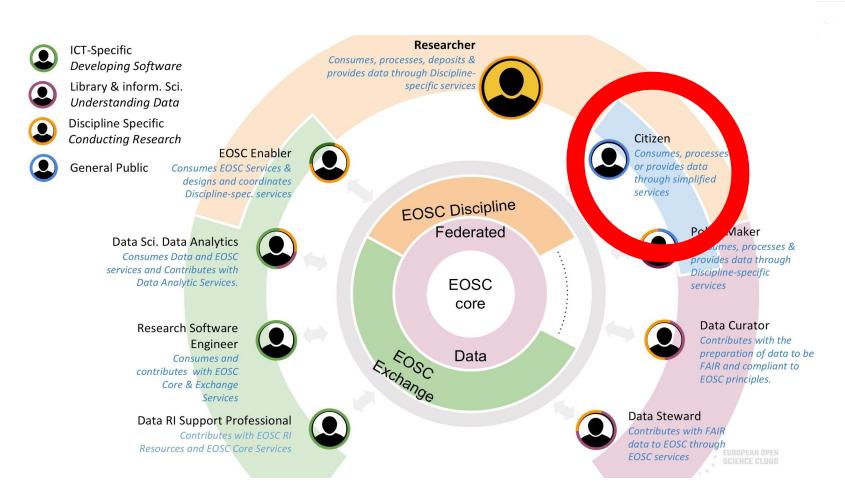


Image credit: Natalia Manola (OpenAIRE), Vinciane Gaillard (EUA), Iryna Kuchma (EIFL)

Planet Hunters TESS

ABOUT CLASSIFY TALK COLLECT

Join the Search for Undiscovered Worlds

LEARN MORE

PLANET HUNTERS TESS STATISTICS

Keep track of the progress you and your fellow volunteers have made on this project.

Every click counts! Join Planet Hunters TESS's community to complete this project and help researchers produce important results. Click "View more stats" to see even more stats.

100%

Percent complete

By the numbers

29,183
Volunteers

38,862

Subjects

597,752

VIEW MORE STATS

Classifications

38,862

Completed subjects

Planet Hunters TESS

ABOUT CLASSIFY TALK COLLECT

Join the Search for Undiscovered Worlds

LEARN MORE

PLANET HUNTERS TESS STATISTICS

Science team: 10 academics

Keep track of the progress you and your fellow volunteers have made on this project.

Every click counts! Join Planet Hunters TESS's community to complete this project and help researchers produce important results. Click "View more stats" to see even more stats.

100%

Percent complete

By the numbers

29,183

Volunteers

20 262

Subjects

597,752

Classifications

38,862

Completed subjects

Built-in training

FIELD GUIDE

Planet Transits

Eclipsing Binaries

Stellar Variability

Systematic Effects

Built-in training

FIELD GUIDE

Planet Transits

Eclipsing Binaries

Stellar Variability

Systematic Effects

Eclipsing Binaries

Most stars are not alone, but instead exist in pairs or even triplets that orbit around one another. When one star passes in front of the other we see a dip in the lightcurve, known as an eclipsing binary. Transits due to eclipsing binaries tend to be more V-shapes, whereas transits due to plants are more U-shaped.

If you see an eclipsing binary in a lightcurve, please mark it as a transit and tell us about it using the Talk tool.

ALTERNATING DIPS

Lightcurves of eclipsing binaries can often be identified due to the repetition two dips of different depths. When the two stars are in circular orbits around one another, these dips are evenly spaced:

FIELD GUIDE

FIELD GUIDE

Eclipsing Binaries

PlaTet This is the on Waste Waste Constitution of the Constitution of the Star passes in Front of the Constitution of the Cons

two-way engagement it as a specifical principal of the property of the propert

and training of x1000 more

ECSC USERS O Lightcurves of ellipsing binaries can often be identified due to the epititority of ellipsing binaries can often be identified due to the epititority of ellipsing binaries can often be identified due to the epititority of ellipsing binaries can often be identified due to the epititority of ellipsing binaries can often be identified due to the epititority of ellipsing binaries can often be identified due to the epititority of ellipsing binaries can often be identified due to the epititority of ellipsing binaries can often be identified due to the epititority of ellipsing binaries can often be identified due to the epititority of ellipsing binaries can often be identified due to the epititority of ellipsing binaries can often be identified due to the epititority of ellipsing binaries can often be identified due to the epititority of ellipsing binaries can often be identified due to the epititority of ellipsing binaries can often be identified due to the epititority of ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can often be identified due to the ellipsing binaries can oft

Citizen science is not outreach

Making data FAIR is easy

compared to making FAIR data <u>useful</u>

Provocative statement 2:

The Open University

The science-inclined public is both the largest and most overlooked group of EOSC stakeholders

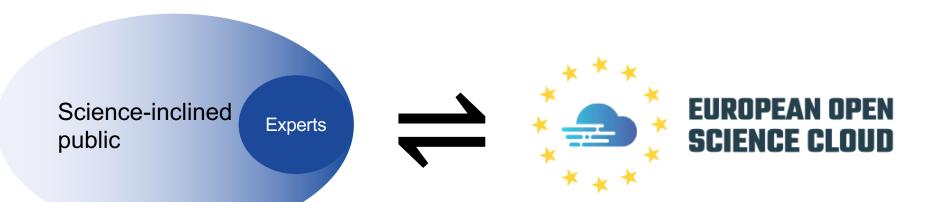
The Open Aniversity

Provocative statement 3:

Making data FAIR is easy

compared to making FAIR data <u>useful</u>

Provocative statement 2:


The Open Aniversity

The science-inclined public is both the largest and most overlooked group of EOSC stakeholders

Provocative statement 3:

The Open Jniversity

Citizen science is not outreach

WSRT-Apertif

Apertif Surveys

Data from the Apertif surveys include imaging and timedomain data. The timedomain products consist of high-time resolution filterbank data in the PSRFITS standard. The imaging data products include the raw observations in the measurement set (MS) standard format. In addition, processed data products are available, including calibration tables, calibrated visibilities. multi-frequency synthesis continuum images, polarization images and cubes, and uncleaned neutral hydrogen (HI) line and beam cubes. Full details of these data will be provided in upcoming papers Leeuwen et al. 2020. Adams et al. 2020).

Visit WSRT-Apertif Archives

ASTRON VO

ASTRON Virtual Observatory

The Virtual Observatory defines a set of standards that can be used to download astronomical data. The ASTRON VO contains several image surveys, which are images in the FITS format. Since the VO is currenty under development, more data types will be available in the future.

Visit ASTRON VO Archives

LOFAR-LTA

LOFAR LTA data

The data from all LOFAR cycle, commissioning and DDT projects since 2013 are stored in the archive. The interferometric data products that can be found include raw. pre-processed data in the measurement set (MS) format, and the products from the calibration, imaging and long baseline pipelines. In the case of beamformed observations. raw data are available in HDF5 format as well as higher-level data products including detime dispersed dynamic spectra and folded pulse profiles. More details on the types of data products stored on the archive are provided [here]. ([here] is wherever you put the more detailed description that was sent to you separately).

Zooniverse

Zooniverse Classification Database

The Zooniverse is the world's largest and most popular platform for people-powered research. This research is made possible by volunteers - more than a million people around the world who come together to assist professional researchers. Our goal is to enable research that would not be possible, or practical, otherwise. Zooniverse research results in new discoveries, datasets useful to research wider community. and many publications.

Visit Zooniverse Archives

Virtual Observatory (VO)

Virtual Observatory (VO)

The Virtual Observatory defines a set of standards that can be used to download astronomical data.

Visit Virtual Observatory (VO) Archives

RUCIO

Rucio

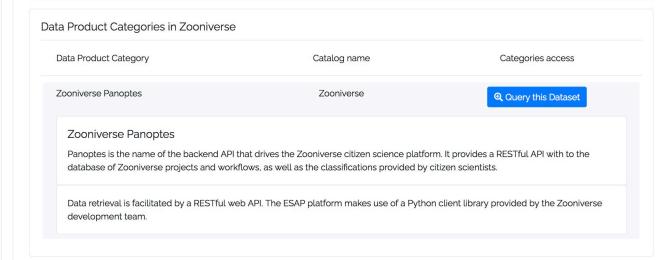
Built on more than a decade of experience, Rucio serves the data needs of modern scientific experiments. Large amounts of data, countless numbers of files, heterogeneous storage systems, globally distributed data centres, monitoring and analytics. All coming together in modular solution to fit your needs.

Visit RUCIO Archives

Visit LOFAR-LTA Archives

Archive - Zooniverse

Instrument	Multiple
Description	Zooniverse Classification Database



Zooniverse Classification Database

The Zooniverse is the world's largest and most popular platform for people-powered research. This research is made possible by volunteers — more than a million people around the world who come together to assist professional researchers. Our goal is to enable research that would not be possible, or practical, otherwise. Zooniverse research results in new discoveries, datasets useful to the wider research community, and many publications.

Data Retrieval

Data retrieval is facilitated by a RESTful web API. The ESAP platform makes use of a Python client library provided by the Zooniverse development team.

Credit: Hugh Dickinson

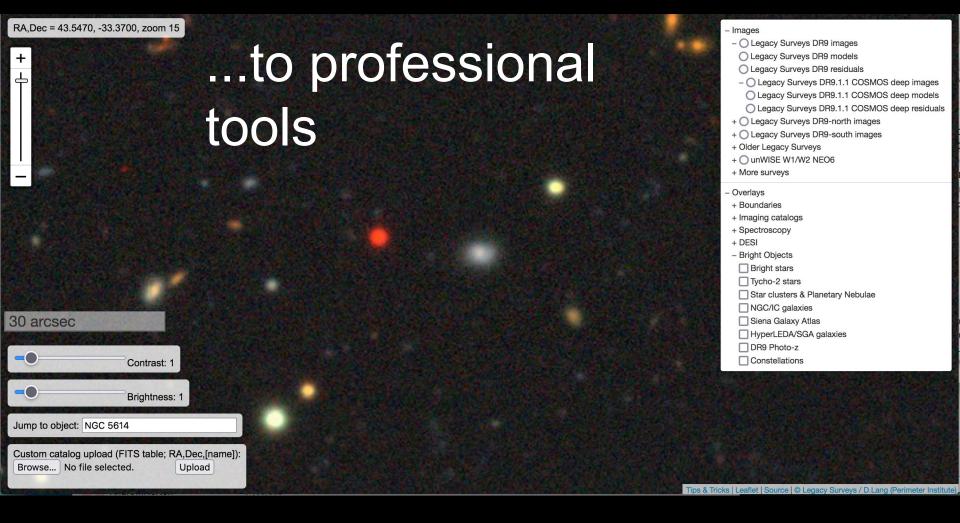
ESCAPE

Archive - Zooniverse

Instrument	Multiple
Description	Zooniverse Classification Database

Aspiration: manage your zooniverse Panoptes

citizen scientiste project from ce project from contract and the class actions provided by citizen scientists.


Weightshorp EOS to the second second

Credit: Hugh Dickinson

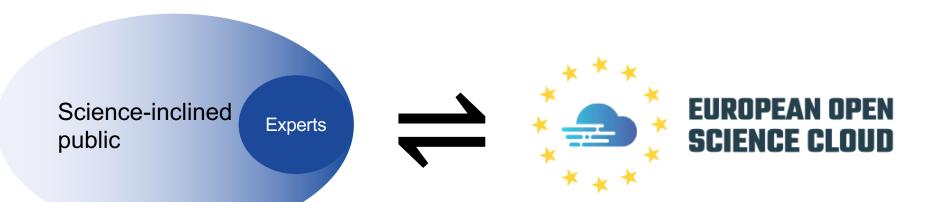
Volunteers already jump from Galaxy Zoo...

SUBJECT METADATA		
ra	43.57565186771203	
dec	-33.35775666586277	
sdss_search	Click to view in SDSS	
decals_search	Click to view in DECALS	
simbad_search	Click to search SIMBAD	
vizier_search	Click to search VizieR	
nasa_ned_search	Click to search NASA NED	
metadata_message	Metadata is available in <u>Talk</u>	
panstarrs_dr1_search	Click to view in PANSTARRS DR1	

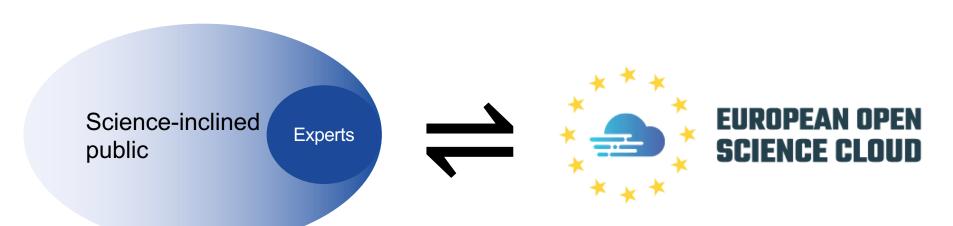
Making data FAIR is easy

compared to making FAIR data <u>useful</u>

Provocative statement 2:


The Open Aniversity

The science-inclined public is both the largest and most overlooked group of EOSC stakeholders


Provocative statement 3:

The Open Jniversity

Citizen science is not outreach

Making data FAIR is easy

compared to making FAIR data useful

The science-inclined public is both the largest and most overlooked group of EOSC stakeholders

ne Open

Citizen science is not outreach

Final provocative statement: no single EOSC interface will suit everyone

